Azure OpenAI
Replace https://{server}.openai.azure.com/openai/deployments/{model}/...
with https://llmfoundry.straive.com/azure/openai/deployments/{model}/...
.
ONLY these model
s are supported:
gpt-4o-mini
gpt-4
(points togpt-4-turbo-2024-04-09
)gpt-4-vision-preview
text-embedding-3-large
text-embedding-3-small
text-embedding-ada-002
gpt-35-turbo
(points togpt-35-turbo-0125
)
Curl
curl -X POST "https://llmfoundry.straive.com/azure/openai/deployments/gpt-4o-mini/chat/completions?api-version=2024-05-01-preview" \
-H "Authorization: Bearer $LLMFOUNDRY_TOKEN:my-test-project" \
-H "Content-Type: application/json" \
-d '{"messages": [{"role":"user","content":"What is 2 + 2"}]}'
curl -X POST "https://llmfoundry.straive.com/azure/openai/deployments/gpt-4-vision-preview/chat/completions?api-version=2024-05-01-preview" \
-H "Authorization: Bearer $LLMFOUNDRY_TOKEN:my-test-project" \
-H "Content-Type: application/json" \
-d '{"messages":[{"role":"user","content":[{"type":"image_url","image_url":{"url":"https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png"}},{"type":"text","text":"Who is this?"}]}]}'
curl -X POST "https://llmfoundry.straive.com/azure/openai/deployments/text-embedding-3-small/embeddings?api-version=2024-05-01-preview" \
-H "Authorization: Bearer $LLMFOUNDRY_TOKEN:my-test-project" \
-H "Content-Type: application/json" \
-d '{"input": ["Alpha", "Beta", "Gamma"], "encoding_format": "base64"}'
Python requests
import os
import requests # Or replace requests with httpx
response = requests.post(
"https://llmfoundry.straive.com/azure/openai/deployments/gpt-4o-mini/chat/completions?api-version=2024-05-01-preview",
headers={"Authorization": f"Bearer {os.environ['LLMFOUNDRY_TOKEN']}:my-test-project"},
json={"messages": [{"role": "user", "content": "What is 2 + 2?"}]},
)
print(response.json())
JavaScript
const token = process.env.LLMFOUNDRY_TOKEN;
const response = await fetch("https://llmfoundry.straive.com/azure/openai/deployments/gpt-4o-mini/chat/completions?api-version=2024-05-01-preview", {
method: "POST",
headers: { "Content-Type": "application/json", Authorization: `Bearer ${token}:my-test-project` },
// If the user is already logged into LLM Foundry, use `credentials: "include"` to send **THEIR** API token instead of the `Authorization` header.
// credentials: "include",
body: JSON.stringify({ messages: [{ role: "user", content: "What is 2 + 2" }] }),
});
console.log(await response.json());
Python OpenAI
import os
from openai import AzureOpenAI
client = AzureOpenAI(
api_key = f'{os.environ.get("LLMFOUNDRY_TOKEN")}:my-test-project',
api_version = "2024-05-01-preview",
azure_endpoint = "https://llmfoundry.straive.com/azure"
)
# Rest of your code is the same
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": "What is 2 + 2?"}],
)
print(response.json())
LangChain
import os
from langchain_openai import ChatOpenAI
os.environ["OPENAI_API_VERSION"] = "2024-05-01-preview"
os.environ["AZURE_OPENAI_API_KEY"] = f'{os.environ.get("LLMFOUNDRY_TOKEN")}:my-test-project'
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://llmfoundry.straive.com/azure"
# Chat
chat_model = ChatOpenAI(model="gpt-4o-mini")
print(chat_model.invoke("What is 2 + 2?").content)